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Abstract 

We give algebraic and geometric classifications of complex 4-dimensional nilpotent 

noncommutative Jordan algebras. Specifically, we find that, up to isomorphism, there are 

only 18 non-isomorphic nontrivial nilpotent noncommutative Jordan algebras. The 

corresponding geometric variety is determined by the Zariski closure of 3 rigid algebras and 

2 one-parametric families of algebras. 
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Introduction 

Algebraic classification (up to isomorphism) of algebras of small dimension from a certain 

variety defined by a family of polynomial identities is a classic problem in the theory of non-

associative algebras. There are many results related to algebraic classification of small 

dimensional algebras in varieties of Jordan, Lie, Leibniz, Zinbiel and other algebras. The 

work was supported by RFBR 18-31-20004; FAPESP 18/15712-0, 19/00192-3. Another 

interesting approach of studying algebras of a fixed dimension is to study them from a 

geometric point of view (that is, to study degenerations and deformations of these algebras). 

The results in which the complete information about degenerations of a certain variety is 

obtained are generally referred to as the geometric classification of the algebras of these 

variety. There are many results related to algebraic and geometric classification of  

Jordan, Lie, Leibniz, Zinbiel and other algebras [1,4,6-14,16,17,19,20,22-55,27,33,38]. 

Noncommutative Jordan algebras were introduced by Albert in [3]. He noted that the 

structure theories of alternative and Jordan algebras share so many nice properties that it 

is natural to conjecture that these algebras are members of a more general class with a 

similar theory. So he introduced the variety of noncommutative Jordan algebras defined by 

the Jordan identity and the flexibility identity.  

Namely, the variety of noncommutative Jordan algebras is defined by the following 

identities: 
( ) ( )x yx xy x  

2 2( ) ( ) .x yx x y x  
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The class of noncommutative Jordan algebras turned out to be vast: for example, apart from 

alternative and Jordan algebras it contains quasiassociative algebras, quadratic flexible 

algebras and anticommutative algebras. However, the structure theory of this class is far 

from being nice.Nevertheless, a certain progress was made in the study of structure theory 

of noncommutative Jordan algebras and superalgebras  

 (see, for example [5,26,34-37]).  

In this paper, our goal is to obtain a complete algebraic and geometric description of the 

variety of all 4-dimensional nilpotent noncommutative Jordan algebras over the complex 

field. To do so, we first determine all such 4-dimensional algebra structures, up to 

isomorphism (what we call the algebraic classification), and then proceed to determine the 

geometric properties of the corresponding variety, namely its dimension and description of 

the irreducible components (the geometric classification).  

Note that, every 2-step nilpotent algebra is a noncommutative Jordan algebra 

and the algebraic and geometric classification of complex 4-dimensional 2-step nilpotent 

algebras can be found in [29]. 

Our main results are summarized below.  

 

TheoremA.There are only 18 non-isomorphic complex 4-dimensional nontrivial nilpotent 

noncommutative Jordan algebras, described explicitly in Appendix~A. 

From the geometric point of view, in many cases the irreducible components of the variety 

are determined by the rigid algebras, i.e., algebras whose orbit closure is an irreducible 

component. It is worth mentioning that this is not always the case and already in [15], 

Flanigan had shown that the variety of 3-dimensional nilpotent associative algebras has an 

irreducible component which does not contain any rigid algebras --- it is instead defined by 

the closure of a union of a one-parameter family of algebras. Here, we encounter a different 

situation. Informally, although Theorem~B shows that there are three generic algebras and 

two generic parametric families in the variety of 4-dimensional nilpotent noncommutative 

Jordan algebras. 

 

TheoremB. The variety of 4-dimensional nilpotent noncommutative Jordan algebras has 

dimension 14. It is definded by 3 rigid algebras and two one-parametric 

families of algebras, and can be described as the closure of the union of 4 ( )GL -orbits of 

the following algebras ( ) : 

2 1 1 3 1 2 4 2 1 3 2 2 4( ) : e e e e e e e e e e e e         

 2 1 1 4 1 2 4 2 1 4 2 2 4: e e e e e e e e e e e e         

4

07 1 2 3 1 3 4 2 1 3 4 2 3 4 3 1 4 3 2 4: e e e e e e e e e e e e e e e e e e e         

4

17 1 1 4 1 2 3 2 1 3 1 3 4 2 2 4 3 1 4: e e e e e e e e e e e e e e e e e e          
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18 1 1 2 1 2 3 1 3 4 2 1 3 2 2 4 3 1 4: e e e e e e e e e e e e e e e e e e        

 1. The algebraic classification of nilpotent noncommutative Jordan algebras 

 

1.1. Method of classification of nilpotent algebras. Throughout this paper, we use 

the notations and methods well written in [6, 21], which we have adapted for the 

noncommutative Jordan case with some modifications. Further in this section we give some 

important definitions. 

Let (A; _) be a noncommutative Jordan algebra over   and   V   be a vector space over 

 . The -linear space  2 ,Z A V is defined as the set of  

all bilinear maps 

     ( , ) , , ,x yz z yx xy z zy x       

           , , , , , ,xt yz tx yz tz yx xz yt zt yx zx yt            

                 , , , , , ,xt y z tx y z xz y t tz y x zx y t zt y x          

These elements will be calledcocycles.  For a linear map f  from A to V , if we define 

:f A A V    by ( , ) ( )f x y f xy  , then 
2( , )f Z A V . We define 

 2( , ) : ( , )B A V f f Hom A V    . We define the second cohomology space 

2( , )H A V  as the quotient space  2 2, ( , )Z A V B A V .    

Let ( )Aut A   be the automorphism group of A  and let 
2( , )Z A V   . For 

2( , )Z A V   

define the action of the group ( )Aut A  on 
2( , )H A V by ( , ) ( ( ), ( ))x y x y    . It is easy 

to verify that 
2( , )B A V  is invariant under the action of ( )Aut A : So, we have an induced 

action of ( )Aut A  on 
2( , )H A V . 

 

Let A   be a noncommutative Jordan algebra of dimension m  over  and V   be a -

vector space of dimension k . For 
2( , )Z A V  , define on the linear space A A V    the 

bilinear product “  ,
A

  ” by 0 0 0 0, ( , )
A

x x y y xy x y


     for all 0 0, ; ,x y A x y V   

. The algebra A  is called an k -dimensional central extension of A by V . One can easily 

check that A  is a noncommutative Jordan algebra if and only if 
2( , )Z A V  . 

Call the set  ( ) : ( , ) ( , ) 0Ann x A A x x A       the annihilatorof   . We recall that 

the annihilator of an algebra A   is defined as the ideal  ( ) : 0Ann A x A Ax xA    . 

Observe that ( ) ( ( ) ( ))Ann A Ann Ann A V    . 
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The following result shows that every algebra with a non-zero annihilator is a central 

extension of a smaller-dimensional algebra. 

Lemma 1.Let A  be an n -dimensional noncommutative Jordan algebra such that 

dim( ( )) 0Ann A m  . Then there exists, up to isomorphism, a unique n m -

dimensional noncommutative Jordan algebra 'A and a bilinear map 
2( , )Z A V  with 

( ) ( )Ann A Ann   , where V  is a vector space of dimension m , such that 
'A A  and 

'( )A Ann A A . 

Proof. Let 'A   be a linear complement of ( )Ann A in A . Define a linear map 
':P A A  by 

( )P x v x   for 
'x A and ( )v Ann A , and define a multiplication on 'A  by 

  ', ( )
A

x y P xy   for 
',x y A . For ,x y A , we have 

'P(xy) = P((x-P(x) + P(x))(y-P(y) + P(y))) = P(P(x)P(y)) = [P(x); P(y)]
A

. 

Since P  is a homomorphism 
'( )P A A  is a noncommutative Jordan algebra and 

'( )A Ann A A , which gives us the uniqueness. Now, define the map 
' ': ( )A A Ann A  

by '( , ) [ , ]
A

x y xy x y   . Thus, 
'A  is A  and therefore  0 ,Z A V  and 

( ) ( )Ann A Ann    . 

Definition 2.Let A  be an algebra and I  be a subspace of Ann(A). If 0A A I  then I  is 

called an annihilator component of A . 

Definition 3.A central extension of an algebra A  without annihilator component is called 

a non-split central extension. 

Our task is to find all central extensions of an algebra A  by a space V . In order to solve the 

isomorphism problem we need to study the action of ( )Aut A on 
2( , )H A V . To do that, let 

us fix a basis 1,...., se e of V , and 
2( , )Z A V  . Then   can be uniquely written as 

1

( , ) ( , )
s

i i

i

x y x y e 


 ,  

where 
2( , )Z A V  . Moreover, 1 2( ) ( ) ( ) ... ( )sAnn Ann Ann Ann       . 

Furthermore, 
2( , )B A V   if and only if all 

2( , )i B A V  . It is not difficult to prove (see 

[21, Lemma 13]) that given a noncommutative Jordan algebra A , if we write as above  
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2

1

( , ) ( , ) ( , )
s

i i

i

x y x y e Z A V 


   and ( ) ( ) 0Ann A Ann   , then A  has an annihilator 

component if and only if  1 2, ,..., s    are linearly dependent in  2 ,H A V .  

Let V  be a finite-dimensional vector space over . The Grassmannian ( )kG V  is the set of 

all k -dimensional linear subspaces of V . Let 
2( ( , ))sG H A  be the Grassmannian of 

subspaces of dimension s in 
2( , )H A V . There is a natural action of ( )Aut A  on

2( ( , ))sG H A . Let ( )Aut A . For       2

1 2, ,..., ( ( , ))s sW G H A    define 

     1 2, ,..., sW    . We denote the orbit of 
2( ( , ))sW G H A  under the action 

of ( )Aut A by ( )Orb W .  

Given             2

1 2 1 2, ,..., , , ,..., ( ( , ))s s sW W G H A        , we easily have 

that if 1 2W W  , then 
1 1

( ) ( ) ( ) ( )
s s

i i

i i

Ann Ann A Ann Ann A 
 

   , and therefore we can 

introduce the set  

      2

1 2

1

( ) , ,..., ( ( , )) : ( ) ( ) 0
s

s s s i

i

T A W G H A Ann Ann A   


 
     
 

, 

Which is stable under the action of ( )Aut A . 

Now, let V  be an s -dimensional linear space and let us denote by ( , )E A V  the set of all 

non-split s -dimensional central extensions of Aby V . By above, we can write 

     1 2

1

( , ) : ( , ) ( , ) , ,..., ( )
s

i i s s

i

E A V A x y x y e and T A     


 
   
 

 . 

We also have the following result, which can proved as in [21, Lemma 17]. 

 

Lemma 4.Let , ( , )A A E A V   . Suppose that 
1

( , ) ( , )
s

i i

i

x y x y e 


 a 

nd 
1

( , ) ( , )
s

i i

i

x y x y e 


 . Then the noncommutative Jordan algebra A  and A  are 

isomorphic if and only if  

1 2 1 1([ ],[ ],...,[ ]) ([ ],[ ],...,[ ])s sOrb Orb      . 

 

 

 



 

10 
 

 

 

This shows that there exists a one-to-one correspondence between the set of ( )Aut A -orbits 

on ( )sT A and the set of isomorphism classes of ( , )E A V . Consequently we have a 

procedure that allows us, given a noncommutative Jordan algebra 'A  of dimension n s , 

to construct all non-split central extensions of 'A . 

This procedure is: 

 

Procedure 

1) For a given noncommutative Jordan algebra 'A  of dimension n s , determine 
2 '( , )H A , 

'( )Ann A  and 
'( )Aut A . 

2) Determine the set of 
'( )Aut A -orbits on ( )sT A . 

3) For each orbit, construct the noncommutative Jordan algebra associated with a 

representative of it. 

1.2. Notations. Let A  be a noncommutative Jordan algebra with a basis 1 2, ,..., ne e e . Then 

by ij  we denote the bilinear form :ij A A   with ( , )ij l m il jme e    . Then the set 

 :1 ,ij i j n   is a basis for the space of the bilinear forms on A . Then every 

2( , )Z A   can be uniquely written as 
1 ,

ij ij

i j n

c
 

  , where ijc  . Let us fix the 

following notations: 
i

j    --- jthi-dimensional nilpotent noncommutative Jordan algebra with identity  

0xyz   

i

j      --- jthi-dimensional nilpotent “pure” noncommutative Jordan algebra (without 

identity  0xyz  ) 

i       --- i-dimensional algebra with zero product  

,( )i jA  --- jthi-dimensional central extension of A . 

 

1.3. The algebraic classification of 3-dimensional nilpotent noncommutative 

Jordan algebras. There are no nontrivial 1-dimensional nilpotent Jordan algebras. There 

is only one nontrivial 2-dimensional nilpotent Jordan algebra (it is the non-split central 

extension of 1-dimensional algebra with zero product): 

 

 2

01 1 1 1 22,1
: : e e e    
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Thanks to [6] we have the description of all central extensions of  
2 *

01  and   2  . Choosing 

the Jordan algebras from the central extensions of these algebras, we have the classification 

of all non-split 3-dimensional nilpotent Jordan algebras: 
3

02 2 3,1 1 2 3 2 1 3

3*

03 2 3,2 1 2 3 2 1 3

3*

04 2 3,3 1 1 3 2 1 3 2 2 3

3 2*

01 01 3,1 1 1 2 1 2 3 2 1 3

: ( ) :

: ( ) :

( ) : ( ) :

: ( ) :

e e e e e e

e e e e e e

e e e e e e e e e

e e e e e e e e e

 

   

    

    

    

 

 

1.4. 1-dimensional central extensions of 3-dimensional nilpotent 

noncommutative Jordan algebras. 

1.4.1. The description of second cohomology spaces of 3-dimensional nilpotent 

noncommutative Jordan algebras: In the following table we give the description of the 

second cohomology space of 3-dimensional nilpotent noncommutative Jordan algebras 

 

2( )Z A  
2( )B A  

2( )H A  

 

11 12 21 13

23 32 31 33

, , ,

, ,

    

    
 

11  12 21 13

23 32 31 33

[ ] [ ],[ ],

[ ] [ ],[ ],[ ]

   

    
 

 

11 12 13 31

21 22 23 32

, , ,

, ,

    

    
 

12 21    11 13 31

21 22 23 32

[ ],[ ] [ ],

[ ],[ ],[ ] [ ]

   

    
 

 

11 12 13 31

21 22 23 32

, , ,

, ,

    

    
 

12 21   11 13 31

21 22 23 32

[ ],[ ] [ ],

[ ],[ ],[ ] [ ]

   

    
 

 

11 12 21 22, , ,     11 21 22      11 12 22[ ],[ ],[ ]    

 

11 12 21

13 22 31

, ,   

    
 

11 12 21,     13 22 31[ ] [ ] [ ]      

 

where 
3* 2*

01 01 3e   . 

1.4.2. Central extension of 
3*

01 . Let us use the following nonations: 

1 12 21 2 13 3 23 32 4 31 5 33[ ] [ ], [ ], [ ] [ ], [ ], [ ].                    

The automorphism group of 
3*

01  consists of invertible matrices of the form 
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2

0 0

0

x

y x u

z v



 
 


 
 
 

. 

Since  

 
* * *

1 2 1 2

* *

1 3 1 3

* * *

4 3 5 4 3 5

0

0 0T

    

     

     

  
  

   
   
   

 

the action of 
3*

01( )Aut   on subspace 

5

1

i i

i




  is given by 

5
*

1

i i

i




 , where  

* 2

1 1 3

*

2 1 3 2 3 5

*

3 3

*

4 1 3 4 3 5

* 2

5 3 5

( );

( ) ( );

;

( ) ( );

2 .

x x z

u x z v x y z

xv

u x z v x y z

uv v

  

     

 

     

  

 

    



    

 

 

It is easy to see that the elements 1  and 2 2 4 4 5 5        give us algebras with 2-

dimensional annihilator, which were described before. Since we interested only in new 

algebras we have the following cases: 

(1) 2 4,  then: 

   (a) if 3 0,  then choosing 4 2 5 1 2 3 1

2

3 3 3

( )
, , ,

x x
x y z

      

  

 
     

5

3

,
2

v
u




  we have the representative 3 4 .   

   (b) if 3 0,   then 1 0   and: 

(i)if 5 0,   then choosing 

2

4 2 4 2 2 5

1 5 5 3

( ) ( ) ( )
, , ,

x v x z
x v u

     

  

  
     

we have the representative 1 4 5 .    

(ii)if 5 0,   then choosing 

2

1 2

4 2 1

, ,
x v

v u
 

  
  


we have the representative  
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1 4 .   

(2) 2 4,  then: 

    (a) if 3 0,   then choosing 1 2 5 5

3 3 3

, , ,
2

x x z v
z y u

   

  


      we have the  

representative 3 .  

    (b) if 3 0,   then 1 0  and choosing 2 5

1

( )
,

v x z
u

x

 




   we get the  

representatives 1 5   and 1  depending on whether 5 0   or not. Since  

1 gives an algebra with 2-dimensional annihilator, we have only representative    

1 5 .   

Now we have five new 4-dimensional nilpotent noncommutative Jordan algebras 

constructed from 
3*

01 : 

4 4 4 4 4

02 03 04 05 06, , , , .      

The multiplication tables of these algebras can be found in Appendix. 

1.4.3. Central extension of 
3*

02 . Let us use the following notations: 

1 11 2 13 31 3 21 4 22 5 23 32[ ], [ ] [ ], [ ], [ ], [ ] [ ].                    

The automorphism group of 
3*

02  consists of invertible matrices of the form 

0 0

0 0

x

v

z w xv



 
 


 
 
 

or  2

0 0

0 0

u

y

z w uy



 
 


 
 
 

 

Since                 
2 2

1 2 1 2 2

2 2

1 3 4 5 1 3 4 5 5

2 2

2 5 2 5

0 2

2

0 0

T

x xz x v

xv v vw xv

x v xv

     

         

   





  
  

    
   
   

 

the action of  3

02Aut   on subspace 

5

1

i i

i




  is given by 

5
*

1

i i

i




 , where 
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* 2

1 1 2

* 2

2 2

*

3 3

* 2

4 4 5

* 2

5 5

2 ;

;

;

2 ;

.

x xz

x v

xv

v vw

xv

  

 

 

  

 

 





 



 

Note that 2 5( , ) (0,0)    and since  

2 2

1 2 4 5 5

2 2

2 3 4 5 2 3 1 2 2

2 2

2 5 5 2

0 2

2

0 0

T

y yz y u

yu u uw yu

y u yu

     

         

   





  
  

    
   
   

 

We can always assume 2 0.   

Thus, we have the following cases: 

(1)  3 0,  then: 

    (a) if 5 0,   then choosing 3 3 1 4

2 5 2 5

, , , ,
2 2

x v
x v z w

   

   
       we have the  

representative 2 3 5 .    

    (b) if 5 0,   then: 

(i)if 4 0,  then choosing 

2

3 3 1

2 2 4 2

, , ,
2

x
x v z

  

   
     we have the  

representative 2 3 4 .    

(ii)if 4 0,  then choosing 3 1

2 2

, ,
2

x
x z

 

 
    we have the representative  

2 3 .   

(2) 3 0,  then: 

    (a) if 5 0,   then choosing 2 1 4

5 2 5

, , ,
2 2

x x v
v z w

  

  
      we have the  

representative 2 5 .   

    (b) if 5 0,   then choosing 1

2

,
2

x
z




   we have the representatives 2  and    

2 4  depending on whether 4 0   or not. 
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Now we have six new 4-dimensional nilpotent noncommutative Jordan algebras 

constructed from 
3*

02 : 

4 4 4 4 4 4

07 08 09 10 11 12, , , , , .       

The multiplication tables of these algebras can be found in Appendix. 

1.4.4. Central extension of 
3*

03 . Let us use the following notations: 

1 11 2 13 31 3 21 4 22 5 23 32[ ], [ ] [ ], [ ], [ ], [ ] [ ] .                    

The automorphism group of 
3*

01  consists of invertible matrices of the form 

0

0

x u

y v

z w xv yu



 
 


 
  

. 

Since  

 
* * *

1 2 1 2

* * * *

3 4 5 3 4 5

* *

2 5 2 5

0

0 0

T

    

        

   

  
  

    
         

 

the action of 
3*

03( )Aut   on subspace 

5

1

i i

i




  is given by 

5
*

1

i i

i




 , where  

* 2 2

1 1 3 4

*

2 2 5

*

3 1 3 4

* 2 2

4 1 3 4

*

5 2 5

;

( )( );

2 ( ) 2 ;

;

( )( ).

x xy y

x y xv yu

ux xv yu yv

u uv v

u v xv yu

   

  

   

   

  

  

  

   

  

  

 

Since 2 5( , ) (0,0)   , we have the following cases: 

(1)  5 0,   then choosing 0u  , we have      

* 2 2

1 1 3 4

* 2

2 2

*

3 3 4

* 2

4 4

*

5

;

;

2 ;

;

0.

x xy y

x v

xv yv

v

   

 

  

 



  



 




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 (a)  4 3 1 0,     then we have the representative 2 . 

 (b)  4 3 10, 0,     then choosing 1

2

,v



 we have the representative   

1 2 .   

 (c)  4 30, 0,   then choosing 3 1

2 3

, ,
x

x y
 

 
   we have the representative   

2 3 .   

  (d) 4 0,  then: 

(i)if
2

1 4 34 0,    then choosing 

2

3 2

4 4

, ,
2

x x
y v

 

 
    we have the   

representative 2 4 .   

(ii)if
2

1 4 34 0,    then choosing 

2

1 4 3 4 3

2 4 2 4

4
, , ,

4 2

v x
v x y

   

   


    we    

have the representative 1 2 4 .    

(2)  5 0,  then choosing 2

5

,
u

v



  we have  

* 2 2

1 1 3 4

2
* 2 5
2

5

* 1 5 2 3 3 5 2 4
3

5 5

1 2
* 21 5 2 3 5 2 4
4 2

5

*

5

;

( )
;

2 2
( ) ;

;

0.

x xy y

x y
u

x y u

u

   

 




       


 

      






  


 

 
 

 




 

(a) 4 0,   

(i) 3 10, 0,   then we have the representative 2 . 

(ii) 3 10, 0,   then choosing 

2

5

1

0, ,
y

x u



    we have the representative   
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2 4  . 

(iii) 3 1 5 2 30, 0,      then choosing 3

5

0, ,x y



    we have the     

representative 2 3  . 

(iv) 3 1 5 2 30, 0,      then choosing 

2

3

1 5 2 3

,
2( )

x i


   



 

1 5 2 3

3 5

( )
,

x
y

  

 


 

2

3

1 5 2 3

,
2( )

u


   



we have the representative   

1 2 4   . 

 (b)  4 0,   

(i)
2 2

3 5 2 4 1 5 2 42 0, 0,          then choosing 4

5

,u



  we have the   

representative 1 2 .   

(ii)
2 2

3 5 2 4 1 5 2 42 0, 0,          then choosing 

2 2

1 5 2 4

2

5

( )
,y

    




  

4

5

0, ,x u



   we have the representative 1 2 4 .    

(iii)
2 2

3 5 2 4 1 5 2 3 5 2 42 0, 0,              then choosing 4

2

5

,x



  

2 4 3 5

4 5

( )
,

x
y

   

 


 we have the representative 2 3 .   

(iv)
2 2

3 5 2 4 1 5 2 3 5 2 42 0, 0,              then choosing     

2 3 1 5

3 5 2 4

2
,

2
y x

   

   





we get the representatives * * *

1 1 2 2 4 4 .        

     It gives us the representatives 2 4   and 1 2 4    depending on    

whether
2

1 4 34 0    or not.   

Thus, we have the following representatives of distinct orbits 2 1 2, ,  

2 3 2 4,     and 1 2 4 ,   which give five 4-dimensional nilpotent 

noncommutative Jordan algebras constructed from 
3*

03 : 
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4 4 4 4 4

13 14 15 16 17, , , , .      

The multiplication tables of these algebras can be found in Appendix. 

 

1.5.  The algebraic  classification of 4-dimensional nilpotent noncommutative 

Jordan algebras. Now we are ready to state the main result of this part of the paper. The 

proof of the present theorem is based of the classification of  

 

3-dimensional nilpotent noncommutative Jordan algebras and results of Section 1.4 

Theorem A.There are only 18 non-isomorphic 4-dimensional nontrival nilpotent 

noncommutative  Jordan algebras, described explicitly in Apendix A. 

 

2. The geometric classification of nilpotent noncommutative Jordan algebras 

 

2.1. Definitions and notation. Given an n-dimensional vector space V , the set

  * *,Hom V V V V V V     is a vector space of dimension 
3n . This space has the 

structure of the affine variety 
3n

. Indeed, let us fix a basis 1 2, ,..., ne e e of V . Then any 

( , )Hom V V V   is determined by 
3n structure constants k

ijc   such that 

1

( )
n

k

i j ij k

k

e e c e


  . A subset of ( , )Hom V V V  is Zariski-closed if it can be defined by 

a set of polynomial equations in the variables (1 , , )k

ijc i j k n  . 

Let T  be a set of polynomial identities. The set of algebra structures on V satisfying 

polynomial identities from T  forms a Zariski-closed subset of the variety ( , )Hom V V V

. We denote this subset by ( )L T . The general linear group ( )GL V  acts on ( )L T  by 

conjugations: 
1 1( )( ) ( )g x y g g x g y        

for , , ( ) ( , )x y V L T Hom V V V     and ( )g GL V . Thus, ( )L T  is decomposed into 

( )GL V -orbits that correspond to the isomorphism classes of algebras. Let ( )O   denote 

the orbit of  ( )L T  under the action of  ( )GL V  and ( )O   denote the Zariski closure of 

( )O  . 
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Let   and   be two n -dimensional algebras satisfying the identities from  , and let 

, ( )L    represent   and  , respectively. We say that   degenerates to  and write 

 if ( )O   . Note that in this case we have ( ) ( )O O  . Hence, the definition 

of a degeneration does not depend on the choice of  and  . If  , then the assertion 

  is called a proper degeneration. We write  if ( )O  . 

Let   be represented by ( )L T . Then   is rigid in ( )L T  if ( )O   is an open subset of 

( )L T . Recall that a subset of a variety is called irreducible if it cannot be represented as a 

union of two non-trivial closed subsets. A maximal irreducible closed subset of a variety is 

called an irreducible component. It is well known that any affine variety can be represented 

as a finite union of its irreducible components in a unique way. The algebra A is rigid in 

( )L T  if and only if ( )O   is an irreducible component of ( )L T . 

Given the spaces U and W , we write simply U W   instead of     dim U dim W . 

 

2.2. Method of the description of degenerations of algebras. In the present work 

we use the methods applied to Lie algebras in [4.17,18,38]. First of all, if  and 

, then ( ) ( )Der Der   , where ( )Der   is the Lie algebra of derivations of  . We 

compute the dimensions of algebras of derivations and check the assertion    only 

for such   and  that ( ) ( )Der Der   .  

To prove degenerations, we construct families of matrices parametrized by t . Namely, let 

  and   be two algebras represented by the structures   and   from ( )L T  respectively. 

Let 1 2, ,..., ne e e  be basis of V  and  (1 , , )k

ijc i j k n   be structure constants of    in this 

basis. If there exist ( ) ( )(1 , , )j

ia t t i j n t      such that  

1

( ) (1 )
n

t j

i i j

j

E a t e i n


   form a basis of V  for any t
 , and the structure  

constants of   in the basis 1 2, ,...,t t t

nE E E  are such rational functions ( ) [ ]k

ijc t t  that 

(0)k k

ij ijc c , then   . In this case 1 2, ,...,t t t

nE E E  is called parametrized basisfor 

 . 
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Since the variety of 4-dimensional nilpotent noncommutative Jordan algebras contains 

infinitely many non-isomorphic algebras, we have to do some additional work. Let 

( ) { ( )} I      be a series of algebras, and let   be another algebra. Suppose that for 

, ( )I    is represented by the structure ( ) ( )L T    and  is represented by the 

structure  . Then we say that ( )   if { ( () )} IO     , and ( )    if 

{ ( () )} IO     . 

Let ( ), , ( ),( )I       and   be as above. To prove ( )    it is enough to 

construct a family of pairs ( ( ), ( ))f t g t  parametrized by t  , where ( )f t I  and 

( ) ( )g t GL V . Namely, let 1 2, ,..., ne e e  be basis of V  and  (1 , , )k

ijc i j k n   be structure 

constants of    in this basis. If we construct : (1 , )j

ia i j n     and :f I   

such that 
1

( ) (1 )
n

t j

i i j

j

E a t e i n


    form a basis of V  for any t
 , and the structure 

constants of 
( )f t  in the basis 1 2, ,...,t t t

nE E E  are such rational functions ( ) [ ]k

ijc t t  that 

(0)k k

ij ijc c , then   . In this case 1 2, ,...,t t t

nE E E  is called parametrized basis and a 

parametrized indexfor ( )   , respectively. 

We now explain how to prove ( )   . Note that if ( )Der Der    for all I

then ( )   . One can use also the following generalization of Lemma from [17], whose 

proof is the same as the proof of Lemma. 

Lemma 5.Let   be a Borel subgroup of ( )GL V  and ( )R L T  be a  -stable closed 

subset. If ( )    and for any I  the algebra ( )  can be represented by a 

structure ( ) R   , then there is R representing  . 

 

2.3. The geometric classification of small dimensional noncommutative Jordan 

algebras. Thanks to the description of all degenerations and orbit closures in the varieties 

of all 2-dimensional algebras [31] and all 3-dimensional nilpotent algebras [14], we have the 

following statements. 
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Lemma 6.The variety of complex 2-dimensional noncommutative Jordan algebras has two 

irreducible components defined by the following algebras:  

 
1 1 1 1 2 2 2

5 1 1 1 1 2 1 2 2 1 1 2 2 2 2

(0,0,0,0) :

( ) : (1 ) 1

e e e e e e

e e e e e e e e e e e e e e    

  

        
 

Lemma 7.The variety of complex 3-dimensional nilpotent noncommutative Jordan 

algebras has two irreducible components defined by the following algebras: 
3*

04 1 1 3 2 1 3 2 2 3

3

01 1 1 2 1 2 3 2 1 3

( ) :

:

e e e e e e e e e

e e e e e e e e e

    

   
 

 

2.4. Rigid n -dimensional nilpotent noncommutative Jordan algebra. As follows 

from [3], every one generated noncommutative Jordan algebra is associative; and from [32], 

we conclude that an one generated algebra can not stay in the orbit closure of a non-one 

generated algebra (or a family of non-one generated algebras). Then, summarizing we have 

the following lemma. 

Lemma 8.Any n -dimensional one generated nilpotent Jordan algebra is commutative 

and it is isomorphic to the following algebra 

: , 1 , ,n

i j i je e e i j n i j n      . 

The algebra 
n   is rigid in the variety of complex n -dimensional nilpotent 

noncommutative Jordan algebras. 

 

2.5. The geometric classification of 4-dimensional nilpotent noncommutative 

Jordan algebras. The main result of the present section is the following theorem. 

Theorem B.The variety of complex 4-dimensional nilpotent noncommutative Jordan 

algebras has dimension 14. It is definded by 3 rigid algebras and two one-parametric 

families of algebras, and can be described as the closure of the union of 4( )GL -orbits of 

the following algebras  : 

2 1 1 3 1 2 4 2 1 3 2 2 4

3 1 1 4 1 2 4 2 1 4 2 2 4

4

07 1 2 3 1 3 4 2 1 3 4 2 3 4 3 1 4 3 2 4

4

17 1 1 4

4

18

( ) :

( ) :

:

:

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e e e e e e e e e e

e e e ee e

 

  

      

      

       

  


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Proof. The variety of 4-dimensional noncommutative Jordan algebras has two principal 

subvarieties: 4-dimensional 2-step nilpotent algebras and 4-dimensional Jordan algebras. 

Recall that the full description of the degeneration system of 4-dimensional 2-step nilpotent 

algebras was given in [29]. Using the cited result, we can see that the variety of 4-

dimensional non-pure noncommutative Jordan algebras has two irreducible components 

given by the following families of algebras: 

2 1 1 3 1 2 4 2 1 3 2 2 4

3 1 1 4 1 2 4 2 1 4 2 2 4

( ) :

( ) :

e e e e e e e e e e e e

e e e e e e e e e e e e

 

  

      

      
 

Thanks to [14], the variety of 4-dimensional nilpotent Jordan algebras is defined by two 

rigid algebras: 
4

10 and 
4

18 . 

Now we can prove that the variety of 4-dimensional nilpotent noncommutative Jordan 

algebras has five irreducible components. Thanks to Lemma 8, the algebra  
4

18  is rigid . 

One can easily compute that  Der
4

07  = 2  and Der
4

17    = 4 . It is follows that 
4 4

17 07   . 

The list of all necessary degenerations is given in Table B (see Appendix A) and all needs 

arguments for non-degenerations are given below: 

Non-degeneration Arguments 
4 4

07 2 3 17( ), ( ),      
2 2 3 3 4 4 4 4

2 4 3 12 21 13 31 23 32{ , 0, , , }A A A c c c c c c       

4

17 2 3( ), ( )     
2 2 3 3

3 11 11 22{ 0, 0}A c c c      

 
APPENDIX A. Table A.The list of 4-dimensional ”pure” nilpotent noncommutative Jordan algebras. 

4

01 1 1 2 1 2 3 2 1 3

4

02 1 1 2 2 3 4 3 2 4 3 1 4

4

03 1 1 2 1 2 4 2 1 4 3 1 4 3 3 4

4

04 1 1 2 1 2 4 2 1 4 3 1 4

4

05 1 1 2 2 3 4 3 2 4

4

06 1 1 2 1 2 4 2 1 4 3 3 4

4

07 1 2

:

:

:

:

:

:

:

e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e

e e e e e e e e e e e e

e e

   

    

     

    

   

    

 3 1 3 4 2 1 3 4 2 3 4 3 1 4 3 2 4

4

08 1 2 3 1 3 4 2 1 3 4 2 2 4 3 1 4

4

09 1 2 3 1 3 4 2 1 3 4 3 1 4

4

10 1 2 3 1 3 4 2 1 3 2 3 4 3 1 4 3 2 4

4

11 1 2 3 1 3 4 2 1 3 3 1 4

:

:

:

:

e e e e e e e e e e e e e e e e e

e e e e e e e e e e e e e e e e

e e e e e e e e e e e e e

e e e e e e e e e e e e e e e e e e

e e e e e e e e e e e e

      

      

     

      

    

4

12 1 2 3 1 3 4 2 1 3 2 2 4 3 1 4

4

13 1 2 3 1 3 4 2 1 3 3 1 4

4

14 1 1 4 1 2 3 1 3 4 2 1 3 3 1 4

4

15 1 2 3 1 3 4 2 1 3 4 3 1 4

:

:

:

:

e e e e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e e e e e e

e e e e e e e e e e e e e

     

      

     

       
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4

16 1 2 3 1 3 4 2 1 3 2 2 4 3 1 4

4

17 1 1 4 1 2 3 1 3 4 2 1 3 2 2 4 3 1 4

4

18 1 1 2 1 2 3 1 3 4 2 1 3 2 2 4 3 1 4

:

:

:

e e e e e e e e e e e e e e e

e e e e e e e e e e e e e e e e e e

e e e e e e e e e e e e e e e e e e

       

       

      

 

 

Table B. Degenerations of nilpotent noncommutative Jordan algebras of dimension 4. 

 
4 4

07 02   

1 1 2 3 2 3 4 3 2 4 4

1 1 1 1 1 1

2 2 2 2 2 2

t t t tE e e e E e e E te E te           

4 4

08 03   2

1 1 2 2 3 4 3 2 3 4 4

1 2 1 2 1

2 4 4

t t t tt t
E te e E te e E te e E t e

 
        

4 4

03 04   

2 2 3

1 1 2 2 3 3 4 4

t t t tE te E t e E t e E t e     

4 4

07 08   

2
2 2

1 1 2 3 2 2 3

2 2

3 3 4 4 4

1
( 1)

2 2

1
( 1) ( 1)

2

t t

t t

t t
E t e t e e E te e

E t t e e E t t e


     

    

 

4 4

07 09   1 1 2 2 3 3 4 4

t t t tE e E te E te E te     

4 4

07 10   

1 1 2 3

1 1 2 2 3 3 4 4

t t t tE t e E t e E t e E t e        

4 4

14 13   

1 1 1

1 1 2 2 3 3 4 4

t t t tE e E t e E t e E t e       

4 4

17 14   

1 1 2

1 1 2 2 3 3 4 4

t t t tE t e E e E t e E t e       

4 4

17 15   1 1 2 2 2 3 3 4 4 42 2 2 2 4t t t tE ie e E te E ite te E te        

4 4

17 16   

1 2 3 4

1 1 2 2 3 3 4 4

t t t tE t e E t e E t e E t e        
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